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Introduction
Let C be a curve of genus 2 defined over an algebraically closed field K, and suppose
that C admits a non-constant morphism f : C → E to an elliptic curve E. If f
does not factor over an isogeny of E, then we say that f is an elliptic subcover of
C. Note that this last condition imposes no essential restriction since every non-
constant f : C → E factors over a unique elliptic subcover fmin : C → Emin.

A classical theorem due to Picard [Pi] and Bolza [Bo] of 1882/86 states that a
curve C of genus 2 has either none, two or infinitely many elliptic subcovers. This
is in part due to the fact that the elliptic subcovers occur in pairs. More precisely,
given an elliptic subcover f : C → E, there is a canonical “complementary” elliptic
subcover f ′ : C → E ′ of the same degree N := deg(f) = deg(f ′) which is character-
ized by the requirement that the induced maps on the associated Jacobian varieties
fit into an exact sequence

0→ JE
f∗→ JC

f ′∗→ JE′ → 0;(1)

cf. [FK] or Kuhn [Ku]. This, therefore, naturally suggests the question of whether
all pairs (E,E ′) of elliptic curves and all integers N ≥ 2 arise in this way:

Question. Given two elliptic curves E and E ′ over K and an integer N ≥ 2, does
there exist a curve of type (E,E ′, N), i.e. a curve C of genus 2 which admits two
elliptic subcovers

f : C → E, f ′ : C → E ′,

of degree N such that the associated sequence (1) is exact?

If the two elliptic curves E and E ′ are not isogenous (and if char(K) 6 | N), then
it is not difficult to see that the above question has a positive answer; a proof of this
may be found in [FK], where the existence of such curves C was exploited to study
the arithmetic of elliptic curves. However, if the elliptic curves are isogenous, then
this question becomes rather delicate and requires a much more careful analysis of
the situation; this is the purpose of the present paper and of its sequel [Ka4].
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The basic difficulty here is that it seems to be extremely difficult to exhibit a
curve C of type (E,E ′, N) explicitly. Nevertheless, it is possible to determine the
total number n(E,E ′, N) of such curves (counted with multiplicity according to
their automorphisms), and this is the main object of this paper. This number is
finite if char(K) 6 | N ; in fact, it is easy to see that then

n(E,E ′, N) ≤ sl(N) := #Sl2(Z/NZ) = N3
∏
p|N

(
1− 1

p2

)
,

and that equality holds if E and E ′ are not isogenous. In the general case, the exact
value of n(E,E ′, N) is given by a much more complicated formula (cf. Theorem 3.4
below); however, if N is prime then this formula reduces to the following relatively
simple expression:

Theorem 1 If N is a prime number not equal to char(K), then the number of
curves of genus 2 of type (E,E ′, N) is given by the formula

n(E,E ′, N) = sl(N)− 1

2

N−1∑
k=1

h(E,E ′, k(N − k)),(2)

where h(E,E ′,m) denotes the number of isogenies h : E → E ′ of degree m.

Remarks. 1) As was already remarked, the above theorem is only a special case
of Theorem (3.4) which treats not only the case of composite N ’s but also those for
which char(K)|N . In the latter case the number n(E1, E2, N) may be infinite.

2) In [Fr], G. Frey obtains a number of very interesting applications of Theorem
1 (and/or of Theorem 3 below). For example, he is able to construct curves C of
genus 2 over a given finite field Fq with the remarkable property that C admits an
infinite tower of geometric unramified galois extensions over C (all defined over Fq).

By analyzing the sum on the right hand side of (2), it is possible (cf. Theorem
4.4) to derive the following lower bound on n(E,E ′, N).

Theorem 2 (“Existence Theorem”) If N is a prime number not equal to
char(K) and E or E ′ is not supersingular, then we have

1

6
sl(N) < n(E,E ′, N) ≤ sl(N).(3)

Thus, in this situation there always exists a curve C of genus 2 of type (E,E ′, N).

In particular, we see that the above question has a positive answer whenever
N is prime and char(K) = 0. In the sequel [Ka4] it will be shown that the above
estimate is still true whenever char(K) 6 | N , as long as either j(E) 6= 0 or E is not
supersingular. In addition, the exceptional cases are analyzed further there.

The starting point of the proof of Theorem 1 is the “basic construction” of
curves of genus 2 with elliptic subcovers which was explained in [FK] (cf. also [Ka1]
or [Ka2]) and which is recalled in section 1 below. In this construction, each curve C
of type (E,E ′, N) is constructed from the data (E,E ′, ψ), where ψ : E[N ]

∼→ E ′[N ]
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is an isomorphism of the groups of N -torsion points of E and E ′; more precisely, ψ
has to be an anti-isometry with respect to the Weil pairings. However, not every
such triplet (E,E ′, ψ) gives rise to a (smooth, irreducible) curve of genus 2 in this
way, for the curve Cψ constructed by this procedure may turn out to be reducible.
The cornerstone of this paper, therefore, is an analysis the reducible anti-isometries
ψ; cf. Definition 1.2. It turns out that ψ is reducible if and only if ψ is “induced” by
a suitable isogeny h : E → E ′. In the case that N is prime, this may be formulated
as follows (cf. Remark 2.5 below):

Theorem 3 (“Reducibility Criterion”) If N is prime, then ψ : E[N ]→ E ′[N ]
is reducible if and only if there is an isogeny h : E → E ′ of degree k(N − k), for
some 1 ≤ k < N , such that

ψ ◦ [k] = h |E[N ] .

If N is composite, then a similar but more complicated result holds, for then one
has to study those isogenies h which admit two factorizations h = h′1 ◦ h1 = h′2 ◦ h2

that form a diamond (or square); such are called “isogeny diamond factorizations”;
cf. Definition 2.1 and Theorem 2.6 for the precise definition and statement.

Even though Theorem 1 presents an explicit formula for n(E,E ′, N), the task of
extracting from this the lower bound (3) still requires considerable work, for naive
estimates of the right hand side of (2) tend to be negative if Hom(E,E ′) is large. To
circumvent this problem we prove the following “mass formula” which shows that
“on average” the number r(E,E ′, N) (= sl(N) − n(E,E ′, N), if char(K) 6 | N) of
reducible anti-isometries is much smaller than sl(N) (cf. Theorem 4.1):

Theorem 4 (“Mass Formula”) Let E be an elliptic curve over K. Then

∑
E′

r(E,E ′, N)

#Aut(E ′)
=

1

2

N−1∑
k=1

σ(E, k(N − k), N),(4)

where the sum on the left extends over a system of representatives of the isomorphism
classes of elliptic curves E ′/K, and σ(E,m,N) denotes the number of subgroups
H ≤ E with #H = m and E[q] 6≤ H, for all primes q | N .

Finally, it is perhaps useful to add some historical remarks. Indeed, curves with
elliptic subcovers have a long history, dating back to Legendre and Jacobi, who
wrote down the first examples in 1832. Later they were studied extensively by
Bolza, Humbert, Picard, Poincaré, and many others, as is documented in chapter
XI of Krazer’s book [Kr]. At that time the main focus was on the associated elliptic
differential ω = f ∗ωE, where ωE denotes the holomorphic differential on E; for this
reason such curves are often referred to as “curves with an elliptic differential”. In
more recent times, various aspects of these curves were studied by Hayashida and
Nishi [HN], Lange [La1] (see also [La2]), Ibukiyama, Katsura and Oort [IKO], Kuhn
[Ku], Murabayashi [Mur], and by Kani [Ka1], [Ka3]. Arithmetic applications of such
curves were given by Moret-Bailly [MB], Serre [Se2], [Se3] and by [FK], [Ka2].

3



As should be evident already, this paper developed out of the joint work [FK]
with G. Frey, whom I would like to thank very much for the many stimulating and
fruitful discussions as well as for his continued interest in this research. In addition,
I have benefitted from discussions with A. Brumer, I. Kiming, B. Mazur, F. Oort
and J.-P. Serre on this topic. Above all, I would like to thank the referee for his
careful reading of this paper and for his astute suggestions which greatly clarified
and shortened the article. Finally, I would like to gratefully acknowledge support
from the Natural Sciences and Engineering Research Council of Canada (NSERC).

1 Review of the basic construction

In this section we briefly outline the basic construction of curves of genus 2 with
elliptic differentials (or subcovers) of degree N . This method was sketched in [FK]
and was generalized in [Ka1] in order to construct the moduli space of curves of
genus g ≥ 2 with elliptic differentials.

Throughout, let K be an algebraically closed field of arbitrary characteristic.
Suppose first that C is a smooth, projective curve of genus 2 over K which admits
a surjective morphism f : C → E to an elliptic curve E. Without essential loss of
generality, we may assume that f is minimal (or maximal [Se1] or optimal [Ku]) in
the sense that f does not factor over an isogeny or, equivalently, that the induced
homomorphism f ∗ : JE → JC is closed immersion; we then say that f : C → E is an
elliptic subcover. By duality, the kernel of the dual map f∗ = (f ∗)̂ : ĴC'JC→ĴE'JE
is connected, and hence is (the Jacobian of) an elliptic curve E ′; viz. JE′ = Ker(f∗).
If we dualize the inclusion map i : JE′ ↪→ JC and compose it with the “canonical
map” j : C ↪→ JC ' ĴC , then we obtain a finite morphism f ′ = î◦ j : C → ĴE′ = E ′

which, as one easily checks, induces the exact sequence

0→ JE
f∗→ JC

f ′∗→ JE′ → 0;

note that f ′ is uniquely determined by this property up to isomorphism. It is then
not difficult to see that

f ∗JE[N ] = f ′∗JE′ [N ] = f ∗JE ∩ f ′∗JE′ ,(1.1)

where JE[N ] = Ker([N ]JE) denotes the subgroup scheme of N -torsion points of JE.
From this one concludes that N := deg(f) = deg(f ′), and that there is a unique
isomorphism ψ = ψf : JE[N ]

∼→ JE′ [N ] such that

f ∗|JE [N ] = (f ′)∗ ◦ ψ.(1.2)

Then ψ is automatically an anti-isometry with respect to the eN -pairings on E and
on E ′:

eN(ψ(x), ψ(y)) = eN(x, y)−1, ∀x, y ∈ JE[N ],
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and this condition is equivalent to the assertion that the “graph subgroup scheme”
Hψ = Graph(ψ) ≤ (JE×JE′)[N ] is a (maximal) isotropic subgroup of (JE×JE′)[N ]
(with respect to the eN -pairing on A = JE × JE′).

As was mentioned in the introduction, we want to calculate the number of elliptic
coverings of fixed type (JE, J

′
E, N). For this, we shall study the finer “invariant”

ψ : JE[N ]→ JE′ [N ] which is in fact a complete invariant since the elliptic covering
can be reconstructed from the data (JE, JE′ , ψ). Unfortunately, not every anti-
isometry ψ gives rise to an elliptic covering and so the basic problem here is to
identify those that do. This will be done in two steps. First we show that these
ψ are precisely those which are irreducible in the sense defined below, and then we
analyze in the next section the structure of the reducible anti-isometries.

The definition of a reducible/irreducible anti-isometry is somewhat indirect since
it depends on the following general identification.

Proposition 1.1 Let A be an abelian variety of dimension d with a principal polar-
ization λ = λΘ : A

∼→ Â defined by an ample divisor Θ ∈ Div(A), and let p : A→ A′

be an isogeny. Then the following conditions are equivalent:

a) Ker(p) is a maximally isotropic subgroup of A[N ] = K(NΘ) with respect to
the symplectic pairing eNΘ.

b) deg(p) = Nd and there exists Θ′ ∈ Div(A′) such that p∗Θ′ ∼ NΘ.

c) There is a principal polarization λ′ : A′ → Â′ such that p̂ ◦ λ′ ◦ p = [N ] ◦ λ.

Furthermore, the map p 7→ Ker(p) establishes a bijection between

(1) the set of equivalence classes of pairs (p, λ′) where p : A → A′ is an isogeny
and λ′ is a principal polarization on A′ satisfying condition c), and

(2) the set of maximally isotropic subgroups of A[N ].

Here, two pairs (p, λ′) and (p′, λ′′) are said to be equivalent if there is an isomorphism
ϕ : A′

∼→ A′′ such that p′ = ϕ ◦ p and λ′ = ϕ̂ ◦ λ′′ ◦ ϕ.

Proof. a) ⇔ b): Since Θ defines a principal polarization, we have K(NΘ) = A[N ],
and so by Mumford[Mu], p. 231 we see that H := Ker(p) is an isotropic subgroup
of A[N ] ⇔ ∃Θ′ ∈ Pic(A′) such that p∗Θ′ ∼ NΘ. Furthermore, by [Mu], p. 233 we

have that H is maximally isotropic if and only if #H = #K(NΘ)
1
2 = Nd.

b) ⇒ c): Let λ′ = λΘ′ : A′ → Â′ be the polarization defined by Θ′. By [Mu], p.
232, we have K(Θ′) = H⊥/H = {0} since H = Ker(p) maximally isotropic, and so λ′

is a principal polarization. Furthermore, we have p̂◦λΘ′◦p = λp∗Θ′ = λNΘ = [N ]◦λΘ,
the latter by the Theorem of the Square. Thus, λ′ satisfies the conditions of c).

c)⇒ a): The formula of c) shows that H := Ker(p) ≤ A[N ]. Furthermore, since
λ′ = λΘ′ for some Θ′ ∈ Pic(A′), we have λp∗Θ′ = p̂ ◦λ′ ◦ p = λNΘ. Thus p∗Θ′ ≡ NΘ,
and so it follows from the functorial properties of eL([Mu], p. 228, particularly
properties (1) and (3)) that H is isotropic with respect to eNΘ. Finally, since
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deg(p̂) · deg(p) = deg([N ]) = N2d and deg(p̂) = deg(p), we have that deg(p) = Nd,
and so H is maximally isotropic.

Finally, suppose that p : A → A′ and p′ : A → A′′ are two isogenies satifying
the above conditions with λ′ = λΘ′ : A′ → Â′ and λ′′ = λΘ′′ : A′′ → Â′′. If
Ker(p) = Ker(p′), then there is a unique isomorphism ϕ : A′ → A′′ such that
p′ = ϕ ◦ p. Then as above one has p∗Θ′ ≡ NΘ ≡ (p′)∗Θ′′ = p∗(ϕ∗Θ′′). Thus,
applying p∗ we obtain deg(p)Θ′ ≡ deg(p)ϕ∗(Θ′′), and so Θ′ ≡ ϕ∗(Θ′′) since the
Neron-Severi group NS(A′) has no torsion. But this means that ϕ̂ ◦ λ′′ ◦ ϕ = λ′,
and so the last assertion follows.

Definition 1.2 Let (A, λ) be a principally polarized abelian surface and H ≤ A[N ]
be a maximally isotropic subgroup. Then H is called reducible if the unique principal
polarization λH on AH = A/H defined by H (and λ) via Proposition 1.1 is a product
polarization, i.e. if there is an isomorphism ϕ : (AH , λH)

∼→ (E1 × E2, λE1,E1) of
polarized abelian varieties to a product surface E1 × E2 with product polarization
λE1,E2 = λΘE1,E2

, where ΘE1,E2 = pr∗1(0E1) + pr∗2(0E2).
Furthermore, an anti-isometry ψ : E[N ] → E ′[N ] is called reducible if its graph

subgroup Hψ = Graph(ψ) ≤ A[N ] is has this property with repect to the product
polarization λE,E′ on A = E × E ′.

Remark 1.3 The justification for the above terminology lies in a theorem of Weil
[We] from which it follows that a principally polarized abelian surface (A, λΘ) is
isomorphic to a product surface (E1×E2, λE1,E2) if and only if the associated theta
divisor Θ is reducible.

Example 1.4 Let ψ = ψf : JE[N ]→ JE′ [N ] be the anti-isometry associated to an
elliptic covering f : C → E as above. Then by (1.1) and (1.2) we have Hψ = Ker(π),
where π := f ∗+ (f ′)∗ : JE × JE′ → JC and by the discussion of [FK], p. 157, we see
that π̂ ◦λC ◦π = [N ]λJE ,JE′ , where λC is the canonical polarization of JC defined by
C. Since C is irreducible by hypothesis, λC cannot be a product polarization, and
hence ψf is irreducible.

Conversely, if ψ : JE → JE′ is an irreducible anti-isometry, then by Weil’s
theorem ([We], Satz 2), its associated principally polarized quotient variety (Jψ, λψ)
is the Jacobian of a smooth curve C of genus 2 which, as is easy to see, has type
(JE, JE′ , N) (cf. [FK]). We have thus sketched the proof of the following result
(which is implicit in [FK] but is explicitly stated in [Ka1]):

Theorem 1.5 Fix elliptic curves E and E ′ over K and an integer N ≥ 2. Then
the assignment

(f : C → E) 7→ (ψf : JE[N ]→ JE′ [N ])

induces a bijection between the set M(E,E ′, N) of isomorphism classes of elliptic
subcovers f : C → E of type (JE, JE′ , N) and the set I(JE, JE′ , N) of isomorphism
classes of irreducible anti-isometries ψ : JE[N ]→ JE′ [N ].
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2 The Reducibility Criterion

The above Theorem 1.5 reduces the problem of constructing curves of genus 2 of
prescribed type (E1, E2, N) to the problem of finding anti-isometries ψ : E1 → E2

which are irreducible, and so we require an overview of such anti-isometries. As
a first step, we classify here more generally all the reducible maximally isotropic
subgroups H ≤ (E1 × E2)[N ] which are non-diagonal, i.e. H 6= H1 × H2, where
Hi ≤ Ei; the second step consists in identifying those that come from anti-isometries.
It turns out that these are closely related to factorizations of isogenies f : E1 → E2,
and for this reason we introduce the following terminology.

Definition 2.1 Let E1 and E2 be two elliptic curves over K and N ≥ 2 be an
integer. An isogeny factorization configuration of order N from E1 to E2 is a triplet
(f,H1, H2) consisting of an isogeny f : E1 → E2 and two subgroup schemesH1, H2 ≤
Ker(f) such that

#H1 + #H2 = N and #H1 ·#H2 = deg(f),(2.1)

where #Hi denotes the order (or rank) of the subgroup scheme Hi. If, in addi-
tion we have H1 ∩ H2 = {0}, then we say that (f,H1, H2) is an isogeny diamond
configuration. Two isogeny factorization configurations (f,H1, H2) and (f ′, H ′1, H

′
2)

are said to be equivalent, i.e. (f,H1, H2) ∼ (f ′, H ′1, H
′
2), if and only if either f ′ =

−f,H ′1 = H2 and H ′2 = H1 or if f ′ = f,H ′1 = H1 and H ′2 = H2.

Remark 2.2 If f : E1 → E2 is any isogeny which has two factorizations

f = f ′1 ◦ f1 = f ′2 ◦ f2 such that deg(f1) = deg(f ′2),(2.2)

where fi : E1 →E ′i and f ′i : E ′i →E2 are suitable isogenies, then (f,Ker(f1),Ker(f2))
is an isogeny factorization configuration of order N := deg(f1)+deg(f2). Conversely,
each isogeny factorization configuration arises in this way, for the condition Hi ≤
Ker(f) means that f factors over fi : E1 → E ′i = E1/Hi, and fi is uniquely defined
by Hi up to isomorphism. We call the collection (f, f1, f

′
1, f2, f

′
2) an isogeny factor

set representing (f,H1, H2).

Theorem 2.3 (“Reducibility Theorem”) Let E1 and E2 be two elliptic curves
over K and let N ≥ 2 be an integer. Then there is a natural bijection between

a) the set IFC(E1, E2, N) of equivalence classes of isogeny factorization config-
urations (f,H1, H2) of order N from E1 to E2, and

b) the set NRI(E1, E2, N) of non-diagonal, reducible, maximally isotropic sub-
groups H ≤ (E1 × E2)[N ].

Proof. We first construct a map η : IFC(E1, E2, N) → NRI(E1, E2, N) and then
show that it is bijective. For this, let f := (f, f1, f

′
1, f2, f

′
2) be an isogeny factor set

7



representing the isogeny factorization configuration (f,H1, H2) as in Remark 2.2,
and define the isogeny p := pf : E1 × E2 → E ′1 × E ′2 by the rule

p(x1, x2) = (f1(x1)− f̃ ′1(x2), f2(x1) + f̃ ′2(x2)),

where f̃ ′i := λ−1
Ei
◦ f̂ ′i ◦ λE2 : E2 → E ′i denotes the “dual map” of f ′i .

We first claim that Hf = Ker(pf ) is a reducible, maximally isotropic subgroup
of A[N ] with respect to the product polarization λE1,E2 on A = E1 × E2. For this,
we observe that by Proposition 1.1 and the definition of reducibility, it is enough to
show that

p̂ ◦ λE′1,E′2 ◦ p = λE1,E2 ◦ [N ]A.(2.3)

To verify this equation, we first note that it is equivalent to the matrix equation

M̃(p) ·M(p) = diag([N ]E1 , [N ]E2),(2.4)

where, for any isogeny p ∈ Hom(E1 × E2, E
′
1 × E ′2) with matrix M(p) =

(
p11 p12

p21 p22

)
,

where pij ∈ Hom(Ej, E
′
i), the adjoint matrix M̃(p) is defined by M̃(p) =

(
p̃11 p̃21

p̃12 p̃22

)
.

Indeed, if p̃ ∈ Hom(E ′1 × E ′2, E1 × E2) is the isogeny defined by the matrix M̃(p),
then the equivalence of these two formulae follows immediately from the well-known
formula

p̃ = ϕA ◦ p̃ ◦ ϕ−1
A′ ,

in which ϕA : Â → Ê1 × Ê2 is the canonical isomorphism such that ϕA ◦ λE1,E2 =
λE1 × λE2 and ϕA′ is defined similarly for A′ = E ′1 × E ′2.

It thus remains to verify (2.4) for p = pf . Now since by definition

M(pf ) :=

(
f1 −f̃ ′1
f2 f̃ ′2

)
, we see that M̃(pf ) =

(
f̃1 f̃ ′2
−f ′1 f ′2

)
,

and hence (2.3) and (2.4) are equivalent to the equations

f̃1 ◦ f1 + f̃2 ◦ f2 = [deg(f1)]E1 + [deg(f2)]E1 = [N ]E1(2.5)

f̃1 ◦ (−f̃ ′1) + f̃2 ◦ f̃ ′2 = 0(2.6)

(−f ′1) ◦ f1 + f ′2 ◦ f2 = 0(2.7)

(−f ′1) ◦ (−f̃ ′1) + f ′2 ◦ f̃ ′2 = [deg(f ′1)]E2 + [deg(f ′2)]E2 = [N ]E2 .(2.8)

Now these equations hold by definition of an isogeny factor set: (2.5) is true since
deg(f1) + deg(f2) = N , (2.6) and (2.7) hold by the factorization property, and (2.8)
is valid because deg(f ′1) = deg(f2) and deg(f ′2) = deg(f1), and hence deg(f ′1) +
deg(f ′2) = N .

Thus, Hf is a reducible, maximally isotropic subgroup of A[N ]. In addition, Hf

is not diagonal, for if Hf = H ′1×H ′2 with H ′i ≤ Ei, then Ker(f1) ≥ H ′1 and Ker(f̃ ′2) ≥
H ′2. But since #Hf = N2, we must have either #H ′1 ≥ N or #H ′2 ≥ N , which is a

contradiction since deg(f1) = N − deg(f2) < N and deg(f̃ ′2) = deg(f1) < N .
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Next we note that the subgroup Hf depends only on (f,H1, H2) and not the
representative f . Indeed, if g = (g, g1, g

′
1, g2, g

′
2) is another such representative, then

f = g and there are two isomomorphisms ϕi such that gi = ϕi ◦fi and g′i = f ′i ◦ϕ−1
i ,

and so we have pg = (ϕ1 × ϕ2) ◦ pf and Hf = Hg.
In addition, if −f := (−f,−f2, f

′
2,−f1, f

′
1), then we have p−f = −τ ◦ pf , where

τ : E ′1 ×E ′2 → E ′2 ×E ′1 is the isomorphism which interchanges the two factors, and
so in particular H−f = Hf . This, therefore, shows that the assignment f 7→ Hf is
compatible with the above equivalence relation and hence induces the desired map
η : IFC(E1, E2, N)→ NRI(E1, E2, N).

To show that η is injective, let f and g be two isogeny factor sets such that
Ker(pf ) = Ker(pg). Then, since pf and pg both satisfy (2.3), it follows from Propo-
sition 1.1 that there is an isomorphism ϕ such that pg = ϕ ◦ pf and λE′1,E′2 = ϕ̂ ◦
λE′′1 ,E′′2 ◦ϕ. But any such ϕ either has the form ϕ = ϕ1×ϕ2 with ϕi ∈ Hom(E ′i, E

′′
i ),

or the form ϕ = τ ◦ ϕ1 × ϕ2 (= −τ ◦ (−ϕ1) × (−ϕ2)) with ϕ1 : E ′1
∼→ E ′′2 and

ϕ2 : E ′2
∼→ E ′′1 . Now from the previous discussion it follows that in the first case

f and g define the same isogeny factorization configuration, whereas in the second
case they define equivalent configurations, and so η is injective.

Finally we show that η is surjective. Thus, let H ∈ NRI(E1, E2, N) be a
non-diagonal, reducible, maximally isotropic subgroup of A[N ]. Then by definition
there is an isogeny p : A = E1 × E2 → A′ = E ′1 × E ′2 satisfying (2.3) such that

H = Ker(p). Let M(p) =
(
p11 p12

p21 p22

)
be the matrix associated to p, and put f1 = p11,

f2 = p21, f ′1 = −p̃12, and f ′2 = p̃22. In addition, put f = f ′1 ◦ f1. We claim that
f := (f, f1, f

′
1, f2, f

′
2) is an isogeny factor set of order N . Indeed, since p satisfies

(2.3), it follows that the formulae (2.5) – (2.8) hold for f1, f
′
1, f2, f

′
2. From (2.7) we

see that f := f ′1 ◦ f1 = f ′2 ◦ f2, and from (2.5) we have deg(f1) + deg(f2) = N .
Furthermore, since N(N − (deg(f2) + deg(f ′2))) = (N − deg(f2))(N − deg(f ′2)) −
deg(f1) deg(f ′1) = 0 by (2.7) and (2.5),(2.8), we see that deg(f2) + deg(f ′2) = N ,
and hence deg(f1) = deg(f ′2) by (2.5). Finally, f is an isogeny, for if f1 = 0,
then also f ′2 = 0 and then Ker(p) is a diagonal subgroup, and we obtain a similar
contradiction if f ′1 = 0. This shows that f is an isogeny factor set of order N , and
hence η is bijective.

Corollary 2.4 If f = (f, f1, f
′
1, f2, f

′
2) is any isogeny factor set of order N with

Ker(f1) ∩ Ker(f2) = (0), then there is a unique reducible anti-isometry ψ = ψf :
E1[N ]→ E2[N ] such that

f̃ ′1 ◦ ψ = f1|E1[N ] and f̃ ′2 ◦ ψ = −f2|E1[N ],(2.9)

and every reducible anti-isometry arises in this way. Thus, the bijection of Theorem
2.3 restricts to a bijection between

a) the set IDC(E1, E2, N) of equivalence classes of isogeny diamond configura-
tions of order N from E1 to E2, and

b) the set R(E1, E2, N) of reducible anti-isometries ψ : E1[N ]→ E2[N ].
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Proof. Let pf be the associated isogeny as in Theorem 2.3 and put H = Ker(pf )
and Hi = Ker(fi). Since Ker(pf )∩ (E1× (0)) = (H1 ∩H2)× (0), it follows from the
hypothesis H1 ∩H2 = (0) that (pr2)|H : H → E2[N ] is injective and hence bijective
since #H = N2 = #E2[N ]. Thus, if we put ψ′ := pr1 ◦ (pr2)−1

|H : E2[N ] → E1[N ],
then its “dual graph” is H, i.e. H = {(ψ′(y), y) : y ∈ E2[N ]}. But since H is an
isotropic subgroup of A[N ] (by Theorem 2.3), we see that ψ′ is an anti-isometry, and
hence so is its inverse ψ = (ψ′)−1. By construction, Ker(pf ) = Graph(ψ), which is
equivalent to (2.9). Uniqueness is clear: if ψ1 is another homomorphism satisfying
(2.9), then Graph(ψ1) ≤ Ker(p) = Graph(ψ), and hence ψ1 = ψ.

Conversely, if ψ : E1[N ] → E2[N ] is a reducible anti-isometry, then by the
theorem there is an isogeny factor set f = (f, f1, f

′
1, f2, f

′
2) such that Ker(pf ) =

Graph(ψ) and so (2.9) holds. But since ψ is an isomorphism we have Graph(ψ) ∩
(E1 × (0)) = (0), and so Ker(f1) ∩Ker(f2) = (0), as claimed.

Remark 2.5 Note that by applying f ′1 to both sides of the first equation of (2.9)
we obtain the relation

[n2] ◦ ψ = f|E1[N ], where n2 = deg(f2) = deg(f ′1);(2.10)

which clearly characterizes ψ if and only if (n2, N) = 1.
In particular, we see that if N is prime, then an anti-isometry ψ : E1[N ]→ E2[N ]

is reducible if and only if there is an isogeny f : E1 → E2 of degree k(N − k) (for
some k with 0 < k < N) such that (2.10) holds (with n2 = N − k), for any such f
gives rise to the isogeny diamond configuration (f,Ker(f)[k],Ker(f)[N − k]).

Although the above Corollary 2.4 gives a complete characterization of the re-
ducible anti-isometries ψ : E1[N ] → E2[N ], the description of the associated anti-
isometry by rule (2.9) is somewhat implicit, particularly since it involves the “dual
isogenies” f̃ ′i . For this reason we present the following more explicit description
which may be viewed as a generalization of the characterization (2.10) to the case
of composite N ’s.

Theorem 2.6 (“Reducibility Criterion”) Let f = (f,H1, H2) be an isogeny di-
amond configuration of order N from E1 to E2, and put n = N/d and ki = ni/d,
where d = (n1, n2) and ni = #Hi. Then f factors (uniquely) over [d], i.e. f = f ◦[d],
and there is a unique reducible anti-isometry ψ = ψf : E1[N ]→ E2[N ] such that

ψ(k1x1 + k2x2) = f(x2 − x1), ∀xi ∈ H̃i = [n]−1 (Hi),(2.11)

and every reducible anti-isometry is of this form. Furthermore, if f ′ = (f ′, H ′1, H
′
2)

is another isogeny diamond configuration, then we have ψf = ψf ′ ⇔ f ∼ f ′.

Proof. Let H0 = Ker(f) and Hi[d] = Hi ∩ E1[d], for i = 0, 1, 2. Then H0[d] =
H1[d]×H2[d] ≤ E1[d]. Now since d|ni we have d|#Hi[d] (cf. Proposition 2.10a), and
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so d2|H0[d]. But #E1[d] = d2, and so H0[d] = E1[d]. Thus, E1[d] ≤ H0, and hence
f factors over [d], as asserted.

Let (f, f1, f
′
1, f2, f2) be an isogeny factor set associated to (f,K1, K2). Then

f̃ ′1 ◦ f ◦ [d] = f̃ ′1 ◦ f ′1 ◦ f1 = n2f1 = k2f1 ◦ [d], and similarly f̃ ′2 ◦ f ◦ [d] = k1f2 ◦ [d].
Thus we have

f̃ ′1 ◦ f = k2f1 and f̃ ′2 ◦ f = k1f2.(2.12)

By Corollary 2.4 there is a unique anti-isometry ψ : E1[N ]→ E2[N ] such that (2.9)
holds. We claim that ψ satisfies (2.11). For this, let xi ∈ H̃i. Then kixi ∈ E1[N ],
for Nkixi = ninxi = 0 (because nxi ∈ Hi and #Hi = ni), and so the left hand side

of (2.11) is defined. Next we observe that Ker(f̃ ′1) ∩ Ker(f̃ ′2) = (0), for otherwise
(by duality) f ′1 and f ′2 would factor over a common isogeny, which is impossible
since f1, f

′
1, f2, f

′
2 form a diamond. Thus, to verify (2.11), it is enough to show

that (2.11) is valid after applying f̃ ′i , for i = 1, 2. But by (2.9) and (2.12) we have

f̃ ′1(ψ(k1x1 +k2x2)) = f1(k1x1 +k2x2) = f1(nx1 +k2(x2−x1)) = f̃ ′1(f(x2−x1)), where

we have used the fact that nx1 ∈ H1 = Ker(f1). Similarly, f̃ ′2(ψ(k1x1 + k2x2)) =

−f2(k1x1 + k2x2) = f2(k1(x2− x1)− nx2) = f̃ ′2(f(x2− x1)), and so ψ satifies (2.11).
Since every reducible anti-isometry ψ has the form (2.9) by Corollary 2.4, we

see by the above that every such ψ satisfies (2.11). It thus remains to show that
equation (2.11) defines a unique map ψ : E1[N ]→ E2[N ]. This clearly follows from
the fact that [k1]H̃1 + [k2]H̃2 = E[N ], which seems to be more involved and which
is proven in Proposition 2.10d) below.

In the above proof we required some basic facts about finite subgroup schemes
of an elliptic curve E. Since these will be required again in the next section, we
develop them in some detail here. A basic important notion is that of an m-primitive
subgroup scheme which we study first.

Definition 2.7 A finite subgroup scheme H ≤ E of an elliptic curve E/K is called
primitive, if E[m] ≤ H ⇒ m = ±1. More generally, if m ≥ 1 is any integer, then
we say that H is m-primitive, if H[m] := H ∩ E[m] = Ker([m]H) is primitive, or
equivalently, if

E[q] 6≤ H, for all primes q|m.(2.13)

Similarly, an isogeny f : E → E ′ is called m-primitive if Ker(f) is m-primitive or,
equivalently, if f does not factor over [q], for any prime q|m.

Lemma 2.8 Let H ≤ E be a subgroup of order n 6= 1, and let p = char(K).

a) Suppose p 6 | n. Then H is primitive ⇐⇒ H is cyclic.

b) Suppose n = pr, and E is ordinary. Then H is primitive ⇐⇒ H ' µn or
H ' Z/nZ.

c) Suppose n = pr and E is supersingular. Then H is primitive ⇐⇒ #H = p.
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Proof. a) Here H is étale. By group theory, H is cyclic ⇐⇒ there does not exist a
subgroup of type (p, p)⇐⇒ H is primitive.

b) By hypothesis, H ≤ E[n] ' µn×Z/nZ (cf. [Mu], p. 147). Thus all subgroups
of order n are of the form µps × Z/pn−sZ, n ≥ s ≥ 0. However, such a group is
primitive if and only if s = 0 or n − s = 0, for otherwise E[p] = µp × Z/pZ ≤
µpr × Z/pn−rZ.

c) Since the p-rank of E is 0 by hypothesis, we have that E[n] is local-local of
order p2r. Since [κ(E) : κ(E)p] = p, there is only one subgroup of height 1, and
hence (by induction) there is a unique subgroup Hr of order pr, and these form an
ascending chain (0) = H0 ≤ H1 ≤ H2 = E[p] ≤ H3 ≤ · · · ≤ H2s = E[ps] ≤ · · ·. In
particular, Hi 6= (0) is primitive if and only if i = 1.

Remark 2.9 The above lemma actually describes all primitive subgroup schemes,
for each finite commutative group scheme G of order n = pr11 · · · prss has a unique
decomposition

G ∼= G(p1)× · · · ×G(ps)

into its pi-primary components G(pi). We note the following rules:

#(G(pi)) = (#G)(pi) := prii ,(2.14)

(G[m])(pi) = G(pi)[m(pi)], for any m ∈ N,(2.15)

(G1 ∩G2)(pi) = G1(pi) ∩G2(pi), for subgroups G1, G2 ≤ G;(2.16)

in particular, we see that G is m-primitive if and only if G(q) is m(q)-primitive, for
all primes q | (m,n).

Proposition 2.10 a) If H ≤ E is a subgroup scheme of order n and d|n then also
d|#H[m], and equality holds if (d, n

d
) = 1.

b) If H ≤ E is an m-primitive subgroup scheme of order n and d | (n,m), then
we have #H[d] = d, #H[k] = k and [d]H = H[k], where k = n

d
.

c) Let H1 and H2 be two subgroup schemes of E with H1∩H2 = (0). Then Hi is
d-primitive, where d = (n1, n2) and ni = #Hi. Furthermore, if E is supersingular,
then char(K) 6 | d.

d) In the situation of c), let H̃i = [n]−1(Hi) and H ′i = [ki](H̃i), where ki = ni/d
and n = k1 + k2. Then #H̃i[ki] = ki, #H ′i = Nn, where N = n1 + n2 = nd, and we
have

H ′1 +H ′2 = E[N ] and H ′1 ∩H ′2 = E[n].(2.17)

Proof. a) To prove the first assertion, it is enough to show that H has a subgroup
scheme H ′ ≤ H of order d, for then H ′ ≤ H[d] and so d | #H[d]. For this, we
note that by the structure theorem of finite commutative group schemes (cf. [Mu],
p. 136), it is enough to verify this if H is a group of type (r, r), (l, r), (r, l) or (l, l).

12



In the first three cases this is clear, for then H is a product of étale groups Z/mZ
and multiplicative groups µm. On the other hand, if a subgroup H ≤ E of type
(l, l) appears at all, then E is supersingular, in which case E has a unique subgroup
scheme of order pi, for each i ∈ N (cf. the proof of Lemma 2.8c)). Since these form
a chain, the assertion is here true as well.

Finally, suppose (d, k) = 1, where k = n/d. Then H = H[dk] = H[d] × H[k],
and by the above we have dk ≤ #H[d] ·#H[k] = #H = nk. Thus, equality must
hold throughout, so in particular #H[d] = d.

b) We prove the first assertion by induction on n. If n = 1 or, more generally, if
d = 1, then the assertion is trivial. Thus, assume that there exists a prime q|d. Then
#H[q] = q, for by a) we have q|#H[q] but #H[q] divides #E[q] = q2 properly since
H is q-primitive. Therefore, if H ′ = [q](H), then #H ′ = #H/#H[q] = n

q
. Since

H ′ ≤ H is again m-primitive, the induction hypothesis implies that #H ′[d
q
] = d

q
.

But since [q]H[d] = H ′[d
q
], we see that #H[d] = #H[q]#[q]H[d] = q · d

q
= d, and so

the first assertion is true.
To prove the last two assertions we note that since [d]H ≤ H[k] and #[d]H =

#H/#H[d] = n/d = k, it is enough to verify the last assertion. For this, write n =
n(d)n′, where n(d) =

∏
p|d p

vp(n) denotes the d-component of n. Since (n(d), n′) = 1

we have by a) that #H[n′] = n′. On the other hand, since k = k′n′ where k′ = n(d)
d

,
we have H[k] = H[k′] × H[n′]. But since k′|(n,mr) (for some r ≥ 1), it follows
from what was proved above (by replacing d by k′) that #H[k′] = k′, and so
#H[k] = k′n′ = k, as desired.

c) If H1 were not d-primitive, then there is a prime q|d such that E[q] ≤ H1.
Since q|d|n2, we have by a) that (0) 6= E[q] ∩H2 = E[q] ∩H1 ∩H2 = (0), which is
a contradiction. Thus, H1 (and similarly, H2) is d-primitive.

If E is supersingular, then there is a unique subgroup of order pi (cf. the proof
of Lemma 2.8c)), so H1 ∩H2 = (0) is only possible if p 6 | d.

d) First note that since (n, ki) = 1, it follows that

[n]−1(Hi[ki]) = H̃i[ki]× E[n].(2.18)

(Indeed, the one inclusion is clear. Conversely, if h ∈ [n]−1(Hi[ki]) ≤ E[nki] =
E[ki]×E[n], then h = h1 +h2 with h1 ∈ E[ki] and h2 ∈ E[n]. But then nh1 = nh ∈
Hi[ki], so h1 ∈ H̃i and hence h ∈ H̃i[ki]× E[n].) From (2.18) and b) it follows that
#H̃i[ki] = #Hi[ki] = ki, and hence #H ′i = #H̃i/#H̃i[ki] = n2ni/ki = n2d = nN ,
which proves the first two assertions.

Next we observe that H̃1 ∩ H̃2 = [n]−1(H1 ∩ H2) = [n]−1( (0) ) = E[n]; in
particular, H̃i ≥ E[n] and hence also H ′i = [ki]H̃i ≥ [ki]E[n] = E[n]. Thus
E[n] ≤ H ′1 ∩ H ′2 ≤ H̃1 ∩ H̃2 = E[n], and so we must have equality through-
out, which proves the second identity of (2.17). To prove the first, we note that
since H ′i ≤ E[N ] (because h ∈ H̃i ⇒ Nkih = ninh = 0, since nh ∈ Hi and
#Hi = ni), it is enough to show that #(H ′1 + H ′2) = #E[N ] = N2. But this true
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since #(H ′1 +H ′2) = (#H ′1 ·#H ′2)/(#(H ′1 ∩H ′2)) = (nN)2/n2 = N2, and so the first
identity of (2.17) is also valid.

As an application of this proposition we prove the following result which may
be viewed as a “structure theorem” for isogeny diamond configurations. It is fun-
damental for the counting procedure of the next section.

Corollary 2.11 a) Let (f,H1, H2) be an isogeny diamond configuration of order
N . Then f factors as f = f ◦ [d], where d = (n1, n2) and ni = #Hi and H :=
Ker(f) = [d](Ker(f)) is N-primitive. Furthermore, we have [d]Hi = Hi[ki] = H[ki],
where ki = ni/d.

b) Conversely, suppose that f : E1 → E2 is an isogeny of degree k1k2 where
(k1, k2) = 1 and that H1 and H2 are two subgroup schemes of E1 with H1 ∩ H2 =
(0) such that #Hi = dki (for some d) and Hi ≥ Ker(f)[ki], for i = 1, 2. Then
(f ◦ [d], H1, H2) is an isogeny diamond configuration of order N := d(k1 + k2), and
hence Ker(f) is N-primitive and Hi[ki] = Ker(f)[ki].

Proof. a) The existence of f was already proved in Theorem 2.6. Since f is an
isogeny (and is hence is universally surjective), it follows that [d]Ker(f) = Ker(f).
Furthermore, Hi is d-primitive by Proposition 2.10c), and hence [d]Hi = Hi[ki] has
order ki by Proposition 2.10c). Thus, [d]Hi ≤ [d]Ker(f) ∩ E1[ki] = H[ki] and so we
have equality because H[ki] = ki (since H = k1k2 and (k1, k2) = 1). This proves the
last two assertions.

Finally, since H[ki] = Hi[ki] is d-primitive and since (ki, N)|d and (k1, k2) = 1,
it follows that H[ki] and hence also H is N -primitive.

b) Since the last two assertions follow from a), it is enough to verify the first.
For this it is enough to show that Hi ≤ Ker(f), where f = f ◦ [d]. Now by the
hypotheses we have Hi[ki] ≥ H[ki] and #H[ki] = ki. On the other hand, it follows
from Proposition 2.10c), b) that Hi is d-primitive, and hence that [d]Hi = Hi[ki]
has order ki. Thus, [d]Hi = H[ki] ≤ H, and so Hi ≤ [d]−1(H) = Ker(f), as desired.

3 A formula for r(E1, E2, N)

The Reducibility Criterion of the previous section enables us to count the number
r(E1, E2, N) = #R(E1, E2, N) of reducible anti-isometries ψ : E1[N ]→ E2[N ], and
this leads to a formula for the (weighted) number n(E1, E2, N) of curves of genus 2
of type (E1, E2, N); cf. Theorem 3.4. To state the result, let

h(E1, E2, n,m) = #{f ∈ Hom(E1, E2) : deg(f) = n and f is m-primitive}.(3.1)

denote the number of m-primitive isogenies (cf. Definition 2.7) of degree n. Note
that this number can be expressed in terms of the number h(E1, E2, n) of all isogenies

14



of degree n by using the Moebius µ-function; explicitly, we have

h(E1, E2, n,m) =
∑
k|m
k2|n

µ(k)h
(
E1, E2,

n

k2

)
.(3.2)

This is clear by the usual inclusion/exclusion principle since the set H(E1, E2, n,m)
of m-primitive isogenies of degree n is related to the set H(E1, E2, n) of all isogenies

of degree n by the formula H(E1, E2, n,m) = H(E1, E2, n) \
⋃
p|m
p2|n

H
(
E1, E2,

n
p2

)
◦ [p].

Since the numbers h(E1, E2, n,m) will mainly occur in a very specific form, it is
useful to introduce the abbreviation

h∗(E1, E2, k,N) := h

(
E1, E2,

k(N − k)

(k,N)2
, N

)
.(3.3)

In addition to these numbers we also need the following “weighting factor” w(E, k,N)
which is essentially an expession involving the Dedekind ψ-function

ψ(n) = n
∏
p|n

(
1 +

1

p

)
,

but with minor modifications when char(K)|N . For this reason we define

ψ(p, n) =

{
ψ(n), if p 6 | n,
2ψ(n/n(p)), if p | n,(3.4)

where n(p) = pvp(n) denotes the p-primary component of n (and n(p) = 1 if p = 0),
and put

w(p, k,N) =
ψ(p, k(N − k))

ψ(p, k
d
)ψ(p, N

d
− k

d
)
, where d = (k,N),(3.5)

=
ψ(k(N − k))

ψ(k
d
)ψ(N

d
− k

d
)

= d2
∏
q|d

q6 | k(N−k)

d2

(
1 +

1

q

)
, if p 6 | N.(3.6)

Furthermore, if E is an elliptic curve over a field K of characteristic p, then define

w(E, k,N) = ε(E, d)w(p, k,N),(3.7)

where d = (k,N) and

ε(E, d) =

{
0 if E is supersingular and p | d
1 otherwise.

(3.8)
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Theorem 3.1 The number r(E1, E2, N) = #R(E1, E2, N) of reducible anti-isome-
tries ψ : E1[N ]→ E2[N ] is given by the formula

r(E1, E2, N) =
1

2

N−1∑
k=1

w(E1, k,N)h∗ (E1, E2, k,N)

=
1

2

∑
d|N
d6=N

ε(E1, d)
N/d∑
k=1

(k,N/d)=1

ψ(p, dk(N − dk))

ψ(p, k)ψ(p, N
d
− k)

h(E1, E2, k(N
d
− k), N).

As is evident from the Reducibilty Theorem, the proof of Theorem 3.1 requires
a careful enumeration of certain configurations of finite subgroup schemes of an
elliptic curve E; more precisely, Corollary 2.11 shows that we need to compute the
following number ω(E, d,K1, K2).

Proposition 3.2 Let K1 and K2 be two subgroup schemes of an elliptic curve E
such that (k1, k2) = 1 where ki = #Ki, for i = 1, 2. For each positive integer d, let

Ω(E, d,K1, K2) = {(H1, H2) : H1 ∩H2 = (0), E ≥ Hi ≥ Ki,#Hi = dki, i = 1, 2},

and let Ω′(E, d,K1, K2) denote the subset of those pairs (H1, H2)∈Ω(E, d,K1, K2)
satisfying in addition the condition Hi[ki] = Ki, for i = 1, 2. Then Ω(E, d,K1, K2) =
Ω′(E, d,K1, K2), and their common cardinality ω(E, d,K1, K2) is given by

ω(E, d,K1, K2) = χ(K1, d)χ(K2, d) · w(E, dk1, d(k1 + k2)),(3.9)

where χ(Ki, d) = 1 if Ki is d-primitive and χ(Ki, d) = 0 otherwise.

Before proving this proposition, let us see how Theorem 3.1 follows from it.

Proof of Theorem 3.1. Let IDC(E1, E2, N) denote the set of isogeny diamond con-
figurations of degree N from E1 to E2 and, as in Corollary 2.4, let IDC(E1, E2, N)
denote the set of equivalence classes. We then have by Corollary 2.4 and the fact
that each equivalence class consists of precisely 2 elements that

r(E1, E2, N) = #IDC(E1, E2, N) =
1

2
#IDC(E1, E2, N).(3.10)

It thus remains to calculate #IDC(E1, E2, N). For this, consider the map

ρ : IDC(E1, E2, N)→
N−1
•⋃

k=1

{k} ×H
(
E1, E2,

k(N − k)

(k,N)2
, N

)

which is defined by the rule ρ(f,H1, H2) = {#H1} × f , where f = f ◦ [d] and
d = (n1, n2), ni = #Hi. (Recall that f exists and is N -primitive by Corollary
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2.11a).) Now if (k, f) ∈ {k} × H(E1, E2,
k(N−k)
(k,N)2 , N), then by Corollary 2.11b) we

see that
ρ−1(k, f) = Ω(E1, d,Ker(f)[k1],Ker(f)[k2])),

where d = (k,N), k1 = k/d and k2 = (N − k)/d, and hence by Proposition 3.2 we
obtain

#ρ−1(k, f) = w(E1, k,N)

because χ(Ker(f), N) = 1 implies that χ(Ker(f [ki], d) = 1. Since the right hand

side of this equation is independent of f ∈ H(E1, E2,
k(N−k)
(k,N)2 , N), it follows that

#IDC(E1, E2, N) =
N−1∑
k=1

#ρ−1(k, f)#H(E1, E2,
k(N − k)

(k,N)2
, N)

=
N−1∑
k=1

w(E1, k,N)h∗(E1, E2, k,N),

and so the formula of Theorem 3.1 follows by substituting this expression in (3.10).

It thus remains to prove Proposition 3.2. For this, we require the following
auxiliary result which is also of independent interest:

Proposition 3.3 Let H0 ≤ E be a subgroup scheme of order m and let n be a
positive integer. As usual, p = char(K).

a) The number ψ(E, n,H0) of primitive subgroup schemes H ≤ E of order mn
with H ≥ H0 is

ψ(E, n,H0) = ε′(E, n,m)χ(H0,m)
ψ(p, nm)

ψ(p,m)
,(3.11)

where χ(H0,m) is as in Proposition 3.2 and

ε′(E, n,m) =


0 if E is supersingular and p2 | mn
1
2

if E is supersingular and p||n and p 6 | m
1 otherwise.

b) The number ψ′(E, n,H0) of n-primitive subgroup schemes H ≤ E of order
mn with H ≥ H0 is

ψ′(E, n,H0) = ε′(E, n,m))χ(H0, n)
ψ(p, nm)

ψ(p,m)
.(3.12)

c) Assume that n|m. Then the number τ(E, n,H0) of subgroup schemes H of
order n with H ∩H0 = (0) is

τ(E, n,H0) = ε(E, n)χ(H0, n)
n

n(p)
.(3.13)
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Proof. a) First of all, we may assume that H0 is primitive for otherwise we have
trivially that ψ(E, n,H0) = 0, and then both sides of (3.11) are zero. By Remark
2.9 we have

ψ(E, n,H0) =
∏
q|mn

ψ(E, n(q), H(q)),

and hence it is enough to verify (3.11) is the case that n = qr, m = qs are prime pow-
ers. If q = p and E is ordinary, then ψ(E, pr, H0) = 2 if H0 = 0, and ψ(E, pr, H0) = 1
if H0 6= 0 (because if H0 = µps then necessarily H = µpr , and if H0 = Z/psZ then
H = Z/prZ; cf. Lemma 2.8b)). Thus (3.11) holds in this case.

If q = p and E is supersingular, then ψ(E, pr, H0) = 0 if r+ s ≥ 2 because there
is no primitive subgroup of order pr+s ≥ p2 (cf. Lemma 2.8c)), and so both sides of
(3.11) are 0. Thus, assume r + s ≤ 1. Then ψ(E, pr, H0) = 1, and the same is true
of the right hand side of (3.11) by distinguishing cases.

Finally, if q 6= p, then let Ψ(n) denote the set of primitive subgroups H of order
n, which by Lemma 2.8a) is the same as the set of cyclic subgroups H ≤ E[n] '
Z/nZ × Z/nZ. In particular, we see that Ψ(n) has cardinality ψ(n). Now consider
the map

pn : Ψ(nm)→ Ψ(m)

given by pn(H) = [n]H = H[m] ∈ Ψ(m) (by Proposition 2.10b)). Since [n] :
E[nm] → E[m] is surjective, one sees easily that pn is also surjective. Next we ob-
serve that the group Gnm = Gl2(Z/nmZ) = Aut(E[nm]), which acts transitively on
Ψ(nm), acts also transitively on the set of fibres of pn (because Gm acts transitively
on Ψ(m) and the natural map Gnm → Gm is surjective). Thus, since the elements
of Gmn map fibres to fibres, it follows that all the fibres have the same cardinality,
and hence we obtain

ψ(E, n,H0) = #p−1
n (H0) = #Ψ(mn)/#Ψ(m) =

ψ(mn)

ψ(m)
.

b) It is enough to show that

ψ′(E, n,H0) =
∏
q|nm

ψ′(E, n(q), H0(q)) =
∏
q|n
ψ(E, n(q), H0(q)),(3.14)

for then the assertion follows from a) since χ(H0, n) =
∏
q|n χ(H0(q), n(q)) by Re-

mark 2.9 and since ε′(E, n,m) = ε′(E, n(p),m(p)).
To prove (3.14), we first note that the first equality is obvious by Remark 2.9.

To verify the second, may assume that n = qr and m = qs are prime powers. If
r = 0, i.e. q 6 | n, then H = H0 (and H[n] = (0)), so ψ′(E, n,H0) = 1 in this case, as
claimed. If r > 0 then H is n-primitive ⇔ H is primitive because H is a q-group,
and so ψ′(E, n,H0) = ψ(E, n,H0) in this case, which proves (3.14).

c) By Proposition 2.10c) we have τ(E, n,H0) = 0 if ε(E, n) = 0 or χ(H0, n) = 0,
so assume ε(E, n) = χ(H0, n) = 1. Thus H0 is n-primitive and hence #H0[n] = n
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by Proposition 2.10b). Moreover, we have τ(E, n,H0) = τ(E, n,H0[n]) because
H ∩H0 = H ∩H0[n], if #H = n, and hence we may assume (after replacing H0 by
H0[n]) that #H0 = n.

Furthermore, as before we may assume that n = qr is a prime power. If q = p
and E is supersingular then r = 0 (since ε(E, n) = 1), so (3.13) holds trivially. If
q = p and E is ordinary, then either H0 = µn or H0 = Z/nZ and then H = Z/nZ
(respectively, H = µn) is the only possibility. Thus τ(E, n,H0) = 1 in this case.

Finally, assume q 6= p. Then by Propositions 2.10c) and 2.8a), H0 = 〈x〉 and
H = 〈y〉 are cyclic subgroups of order n which generate E[n] ' Z/nZ×Z/nZ. Thus,

if H ′ =< y′ > is another such subgroup, then there exists g =
(
a 0
c d

)
∈ Gl2(Z/nZ)

such that g
(
x
y

)
=
(
x′

y′

)
. Since the number of such matrices is φ(n)2n, and exactly

φ(n)2 matrices yield the same pair of subgroups, the formula (3.13) follows.

Proof of Proposition 3.2. The asserted equality Ω = Ω′ follows immediately from
Corollary 2.11b). To prove (3.9), let us first consider the case that K1 = (0). Then
(3.9) reduces to

ω(E, d, (0), K2) = ε(E, d)χ(K2, d)
ψ(p, d2k2)

ψ(p, k2)
.(3.15)

To prove this, suppose that (H1, H2) ∈ Ω(E, d, (0), K2). Then H2 is d-primitive
by Proposition 2.10c), and so by Proposition 3.3a) we have ψ′(E, d,K2) choices for
H2. On the other hand, for a fixed H2 with these properties, we have by definition
τ(E, d,H2) possible choices for H1. By Proposition 3.3c), this number does not
depend on H2, and so the total number of choices is

ω(E, d, (0), K2) = τ(E, d,H2)ψ′(E, d,K2) = ε(E, d)
d

d(p)
ε′(E, d, k2)χ(K2, d)

ψ(p, k2)

ψ(p, k2)

by Proposition 3.3b),c). But since ε(E, d)ε′(E, d, k2) = ε(E, d) and d
d(p)

ψ(p, dk2) =

ψ(p, d2k2), we see that (3.15) holds.
From (3.15) it follows that we have

ω(E, d,K1, K2) = ε(E, d)χ(K1, d)χ(K2, d)
ψ(p, d2k1k2)

ψ(p, k1)ψ(p, k2)
,(3.16)

whenever ki = qsi , for i = 1, 2 because the hypothesis (k1, k2) = 1 forces that either
K1 = (0) or K2 = (0). But then the general case follows by multiplicativity because
we have by Remark 2.9 that

ω(E, d,K1, K2) =
∏
q

ω(E, d(q), K1(q), K2(q)).

This concludes the proof of Proposition 3.2, for the right hand sides of (3.9) and
(3.16) are equal by the definition (3.7) of w(E, k,N).
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Now that we have obtained in Theorem 3.1 a formula for r(E1, E2, N), the num-
ber of reducible anti-isometries, we can also derive a formula for n(E1, E2, N) :=
#I(E1, E2, N), the number of irreducible anti-isometries (which may, however, be
infinite in some cases). We observe that by Theorem 1.5 this number may be
interpreted as the weighted number of isomorphism classes of elliptic subcovers
f : C → E1 of type (E1, E2, N), where the weights are determined by the length
of the orbits of the group Aut(E1, E2) := (Aut(E1) × Aut(E2))/{±1} acting on
I(E1, E2, N); in particular, we have that the actual number #M(E1, E2, N) of
these isomorphism classes satisfies the estimates

n(E1, E2, N) ≥ #M(E1, E2, N) ≥ 2n(E1, E2, N)

Aut(E1)Aut(E2)
.(3.17)

Theorem 3.4 If p = char(K) 6 | N or if E1 and E2 are ordinary, then the weighted
number of curves of genus 2 of type (E1, E2, N) is finite and is given by the formula

n(E1, E2, N) = sl(p,N)−r(E1, E2, N) = sl(p,N)− 1

2

N−1∑
k=1

w(p, k,N)h∗(E1, E2, k,N)

where h∗(E1, E2, N) and w(p, k,N) are as in (3.3) and (3.6), and

sl(p,N) = #Sl2(Z/N(p)Z)N(p) =
N3

N(p)2

∏
q|N
q 6=p

(
1− 1

q2

)
,

where N(p) = pvp(N) denotes the p-component of N and N(p) = N/N(p).
On the other hand, if p|N and one of E1 and E2 is supersingular while the other

is not, then n(E1, E2, N) = 0, whereas if both are supersingular, then there are
infinitely many curves of genus 2 of type (E1, E2, N).

Proof. The second equation follows immediately from Theorem 3.1 since in this case
we have ε(E1, (k,N)) = 1, for all 0 < k < N . Furthermore, since by definition

n(E1, E2, N) = s(E1, E2, N)− r(E1, E2, N),

where s(E1, E2, N) denotes the number of anti-isometries ψ : E1[N ] → E2[N ], we
see that all the assertions of the theorem follow once we have shown that

s(E1, E2, N) =


sl(p,N) if p 6 | N or if E1 and E2 are ordinary

∞ if p | N and E1 and E2 are supersingular

0 otherwise.

(3.18)

To prove this, let us first observe that the last case is trivial: if p|N and (say) E1

is supersingular but E2 is ordinary, then E1[N ] 6' E2[N ] (because E1[N ] contains
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a component of type (l, l) wheras E2[N ] does not), so there cannot be any anti-
isometries.

Next, consider the case that p 6 | N . Then E1[N ] ' E2[N ] ' (Z/NZ)2 is étale,
and hence Hom(E1[N ], E2[N ]) ' Gl2(Z/NZ) which means that s(E1, E2, N) =
#Sp2(Z/NZ) = #Sl2(Z/NZ) = sl(p,N).

We now turn to the case that p|N . Since an each isomorphism ψ : E1[N ] →
E2[N ] is the product of its q-primary components ψq : E1[N(q)]→ E2[N(q)] and ψ is
an anti-isometry if and only if each ψq is, we see that s(E1, E2, N) is a multiplicative
function. Thus, since the case p 6 | N has already been verified, it is enough to
consider the case N = pr.

Suppose first that E1 and E2 are both ordinary. Then E1[N ] ' E2[N ] ' µN ×
Z/NZ, and so Hom(E1[N ], E2[N ]) ' Z/NZidµN ⊕ Z/NZidZ/NZ. But m · idmuN ⊕ n ·
idZ/NZ is an anti-isometry if and only id m + n ≡ −1 (mod N), so there are N
anti-isometries in total. This proves the formula (3.18) in this case.

It remains to consider the case that E1 and E2 are both supersingular. In this
case E1[N ] ' E2[N ] =: G is a group of type (l, l) and we claim that there are an
infinite number of anti-isometries. To see this, let M(G) = Hom(G,C) denote the
associated Dieudonné module, where, as in [Od], C denotes the functor of Witt
co-vectors. Recall that M(G) is D-module of finite W-length, where D = W[F, V ]
(with the usual commuting relations) is the Dieudonné ring and W = W(K) denotes
the ring of Witt vectors; in fact, one can show that M(D) = D/(F − V, pr) (cf.
Oort[Oo], p. 39, for the case r = 1). By functoriality, the eN -pairing on E1[N ]
induces a non-degenerate D-linear pairing

ε : M(G)×M(G)→M(Gm) = W/prW,

and so by the fundamental result of Dieudonne-Cartier (cf. [Od]), the assertion
follows once we have shown that the set {f ∈ EndD(M(G)) : ε ◦ f × f = −ε} is
infinite.

To prove this, let us restrict for simplicity to the case r = 1. (The proof for r > 1
is similar.) Then M(G) is a 2-dimensional K-vector space with a basis {e, Fe}, and
we have (cf. [MB], p. 139)

ε(xe+ yFe, x′e+ y′Fe) = (xy′ − yx′)θ,
where θ := ε(e, Fe) ∈ K× satisfies θp = −θ; in particular, θ ∈ Fp2 . Moreover, the
map f 7→ (a, b), where f(e) = ae+ bFe, induces a bijection

EndD(M(G)) ' Fp2 ⊕K;

cf. [Oo]. If we denote the inverse by (a, b) 7→ fa,b, then a short computation shows
that

ε(fa,b(m), fa,b(m
′)) = ap+1ε(m,m′),∀m,m′ ∈M(G),

and so fa,b is an anti-isometry if and only if ap+1 = −1. Since such an element

a = α ∈ Fp2 exists (take α = ζ
p−1

2 , where ζ ∈ F×p2 is a primitive p2− 1-root of unity),
the maps fα,b, with b∈K arbitrary, give rise to infinitely many anti-isometries of G.
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4 A “Mass Formula” for r(E1, E2, N)

The formula of Theorem 3.1 for the number r(E1, E2, N) of reducible anti-isometries
ψ : E1[N ]

∼→ E2[N ] is not only complicated but also difficult to study since the
number h(E1, E2, n) of isogenies of fixed degree n between E1 and E2 depends heavily
on the elliptic curves E1 and E2 and hence cannot be expressed in a convenient
(general) form. However, if we fix one elliptic curve E1 and take the weighted sum
over all elliptic curves E2 then we obtain a number which is essentially independent
of E1 in the sense that it depends only on p = char(K) and on whether or not E1

is supersingular.

Theorem 4.1 (“Mass Formula”) Let E1 be an elliptic curve over K. Then

∑
E2

r(E1, E2, N)

#Aut(E2)
=

1

2

N−1∑
k=1

σ(E1, k(N − k), N),(4.1)

where the sum extends over a system of representatives of the isomorphism classes of
elliptic curves E2 over K, and σ(E1, n,m) denotes the number of subgroup schemes
H ≤ E1 of order n which are m-primitive. Furthermore we have

N−1∑
k=1

σ(E1, k(N − k), N) ≤
N−1∑
k=1

σ(k(N − k), N),(4.2)

and equality holds if and only if p = char(K) = 0 or if N ≤ p. Here σ(m,N) is the
arithmetical function defined by

σ(n,m) :=
∑
d|m
d2|n

µ(d)σ(n/d2) = ψ(n(m))σ(n/n(m)).(4.3)

where σ(n) =
∑
d|n
d and n(m) =

∏
p|m
pvp(n) denotes the m-component of n.

Remark 4.2 In [Ka4] the above sums (4.1) and (4.2) are examined in more detail.

Specifically, it is shown there that the right side of (4.2) is equal to
(

5
24
− 1

4N

)
sl(N),

which therefore serves as an explicit upper bound of (4.1). Moreover, in the case
that E1 is a supersingular curve, the order of magnitude of (4.1) is determined.

Before proving this theorem, let us complement it by calculating the number
σ(E, n,m) mentioned above. We observe that this number is closely related to
the numbers ψ(E, n,H0) and ψ′(E, n,H0) of Proposition 3.3 since σ(E, n, n) =
ψ(E, n, (0)) = ψ′(E, n, (0)), and that hence the following result may be viewed as a
partial generalization of that proposition.
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Proposition 4.3 Let E/K be an elliptic curve and let p = char(K).

a) The number of all subgroup schemes of E of order n is

σ(E, n) =
∑
d2|n

ψ
(
E,

n

d2

)
=

 σ
(

n
n(p)

)
d(n(p)) if E is ordinary

σ
(

n
n(p)

)
if E is supersingular

(4.4)

where ψ(E, n) denotes the number of primitive subgroup schemes of E of order n,
which is given by

ψ(E, n) =

 ψ(p, n), if E is ordinary,

ψ
(

n
n(p)

)
µ(n(p))2, if E is supersingular,

(4.5)

b) The number of m-primitive subgroup schemes H ≤ E of order n is given by

σ(E, n,m) =
∑
d|m
d2|n

µ(d)σ(E, n/d2) = ψ(E, n(m))σ(E, n/n(m)).(4.6)

c) Let n1, n2 ∈ N be integers and put N = n1 + n2, d = (n1, n2), and ki = ni/d,
for i = 1, 2. Then the number of pairs (H1, H2) of subgroup schemes Hi ≤ E of
order ni (i = 1, 2) with H1 ∩H2 = (0) is

π(E, n1, n2) = w(E, n1, N)σ(E, k1k2, N) = σ(E, n1n2, N).(4.7)

Proof. a) First note that since ψ(E, n) = ψ(E, n, (0)), equation (4.5) is a special case
of (3.11), and so the second equality of (4.4) follows easily. The first is immediate,
for if H is any subgroup scheme of E of order n, then there is a unique largest
integer d > 0 such that E[d] ≤ H, and then H = H/E[d] ≤ E = E/E[d] ' E is a
primitive subgroup of E.

b) Let Σ(E, n,m) denote the set of subgroup schemes of order n which are m-
primitive. Then clearly

Σ(E, n,m) = Σ(E, n, 1)\
⋃
p|m
p2|n

[p]−1Σ(E, n/p2, 1),

and so the first equality of (4.6) follows as in the proof of (3.2). To prove the second
equality, viz.

σ(E, n,m) = ψ(E,m(m))σ(E, n/n(m)),(4.8)

we may assume by multiplicativity that n = qr, m = qs are prime powers. If
s = 0 then n(m) = 1, and clearly σ(E, n, 1) = σ(E, n). If s > 0 then n(m) = n
and H is m-primitive if and only if H is primitive (because H is a q-group). Thus
σ(E, n,m) = ψ(E, n) = ψ(E, n(m))σ(E, n/n(m)), and so (4.8) holds.
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c) Let Π(E, n1, n2) denote the set of pairs (H1, H2) in question and consider the
map

s : Π(E, n1, n2)→ Σ(E, k1, N)× Σ(E, k2, N)

defined by s(H1, H2) = (H1[k1], H2[k2]); note that by Proposition 2.10c), b) we have
in fact Hi[ki] ∈ Σ(E, ki, d) = Σ(E, ki, N). Now if Ki ∈ Σ(E, ki, N), for i = 1, 2,
then by definition (cf. Proposition 3.2) we have

s−1(K1, K2) = Ω′(E, d,K1, K2).

By Proposition 3.2, all these fibres have the same cardinality w(E, n1, N), and so
we obtain

π(E, n1, n2, K0) = w(E, n1, N)σ(E, k1, N)σ(E, k2, N) = w(E, n1, N)σ(E, k1k2, N),

since (k1, k2) = 1. This proves the first equality.
It remains to prove the rather mysterious identity

w(E, n1, N)σ(E, k1k2, N) = σ(E, n1n2, N).(4.9)

(It is mysterious because there seems to be no natural map which establishes a
bijection between the two sets Π(E, n1, n2) and Σ(E, n1n2, N) when d > 1.)

Suppose first that ε(E, d) = 0. Then both sides of (4.9) are 0: the left by
definition (3.7), and the right by Lemma 2.8c) since here E is supersingular and p|d,
which means that p2|n1n2.

Next, suppose that ε(E, d) = 1. Write n′i = ni(N) and n′′i = ni/n
′
i for i = 1, 2;

then (n′′1, n
′′
2) = 1 and ki(N) = n′i/d. Now by definition (3.5) and multiplicativity

we have w(E, n1, N) = ψ(p,n1n2)
ψ(p,k1)ψ(p,k2)

=
ψ(p,n′1n

′
2)ψ(p,n′′1 )ψ(p,n′′2 )

ψ(p,n′1/d)ψ(p,n′′1 )ψ(p,n′2/d)ψ(p,n′′2 )
=

ψ(p,n′1n
′
2)

ψ(p,n′1/d)ψ(p,n′2/d)
.

Thus, applying (4.6) we obtain

w(E, n1, N)σ(E, k1k2, N) =
ψ(p, n′1n

′
2)

ψ(p, n′1/d)ψ(p, n′2/d)
ψ(E, n′1n

′
2/d

2)σ(E, n′′1n
′′
2).(4.10)

Since ε(E, d) = 1, we have that E is ordinary or that p 6 | d (⇒ p 6 | n′1n′2). Then
by (4.5) we have ψ(E, n′1n

′
2/d

2) = ψ(p, n′1n
′
2/d

2) = ψ(p, n′1/d)ψ(p, n′2/d), and also
ψ(E, n′1n

′
2) = ψ(p, n′1n

′
2), and hence the right hand side of (4.10) reduces (by (4.6)

again) to ψ(E, n′1, n
′
2)σ(E, n′′1, n

′′
2) = σ(E, n1n2, N), which proves (4.9).

Proof of Theorem 4.1. We begin by proving (4.2). For this we first note that if
E0 is any elliptic curve over a field K0 of characteristic 0, then by Proposition 4.3
(and (4.5)) we have σ(n,m) = σ(E0, n,m) and ψ(n) = ψ(E0, n), and so we see that
(4.3) is a special case of (4.8). We therefore obtain from (4.6), (4.5) and (4.3) the
inequality

σ(E1, n,m) = ψ(E1, n(m))σ

(
E1,

n

n(m)

)
≤ ψ(n(m))σ

(
n

n(m)

)
= σ(n,m),(4.11)
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in which equality holds if and only if char(K) 6 | (n,m). From this the inequality (4.2)
is immediate, and so we see that equality holds in (4.2) if and only if char(K) = 0
or if N ≤ char(K).

We now turn to the proof of (4.1). For this, let Π(E1, k,N−k) be as in the proof
of Proposition 4.3c), and let Π(E1, E2, k,N − k) = {(H1, H2) ∈ Π(E1, k,N − k) :
E1/(H1 +H2) ' E2}. Then the reducibility theorem (Corollary 2.4) yields

r(E1, E2, N)

#Aut(E2)
=

1

2

N−1∑
k=1

#Π(E1, E2, k,N − k),(4.12)

for if (f,H1, H2) is an isogeny diamond configuration of order N , then (H1, H2) ∈
Π(E1, E2, k,N −k) with k = #H1 and conversely, each (H1, H2) ∈ Π(E1, E2, k,N −
k) comes from an isogeny diamond configuration (f,H1, H2), where f is uniquely
determined by the condition Ker(f) = H1 +H2 up to an automorphism of E2.

From (4.12) we obtain

∑
E2

r(E1, E2, N)

#Aut(E2)
=

1

2

∑
E2

N−1∑
k=1

#Π(E1, E2, k,N − k) =
1

2

N−1∑
k=1

#Π(E1, k,N − k),

from which formula (4.1) follows in view of Proposition 4.3c).

We are now ready to derive lower bounds for n(E1, E2, N) and thus prove the
existence theorem announced in the introduction.

Theorem 4.4 (“Existence Theorem”) If N 6= char(K) is a prime number and
E1 or E2 is not supersingular, then

1

6
sl(N) < n(E1, E2, n) ≤ sl(N).(4.13)

Thus, in this situation there always exists a curve C of genus 2 of type (E1, E2, N).

Proof. The upper bound in (4.13) follows directly from Theorem 3.4 since by defi-
nition r(E1, E2, N) ≥ 0 and sl(N) = sl(p,N). For the lower bound, we shall prove
the equivalent inequality

r(E1, E2, N) <
5

6
sl(N) =

5

6
N(N2 − 1).(4.14)

For this, suppose first that Min(a(E1), a(E2)) ≤ 4 where a(Ei) := #Aut(Ei).
Then by the mass formula (4.1) together with the symmetry of r(E1, E2, N) in E1

and E2 we obtain from (4.2) the estimate

r(E1, E2, N) ≤ 4

(
1

2

N−1∑
k=1

σ(E1, k(N − k), N)

)
≤ 2

N−1∑
k=1

σ(k(N − k)).(4.15)
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Next we use the following identity:

N−1∑
k=1

σ(k(N − k)) =
N−1∑
k=1

σ(k)σ(N − k)) =
1

12
(5σ3(N)− (6N − 1)σ(N))(4.16)

=
(

5

12
− 1

2N

)
sl(N).

Here, the first and third equalities hold because N is prime, whereas the second is
a general formula of Glaisher [Gl] (cf. [Ka4] for further discussion of this formula).

Combining (4.15) and (4.16) yields r(E1, E2, N) ≤
(

5
6
− 1

N

)
sl(N), which proves

(4.14) in the case that Min(a(E1), a(E2)) ≤ 4.
Now suppose that Min(a(E1), a(E2)) > 4. Looking at the table of groups of

automorphisms of elliptic curves, we see that we then must have j(E1) = j(E2) = 0
(cf. Silverman [Si], p. 103). Thus, to finish the proof it remains to consider the case
that j(E1) = j(E2) = 0 and that E = E1 ' E2 is ordinary. Here we shall prove the
following slightly better result:

r(E1, E2, N) <
5

16
sl(N).(4.17)

This, however, follows easily from the estimate

h(E,E,m) ≤ 3

2
σ(m), if m ≥ 2,(4.18)

for by Theorem 3.1 and equations (4.18) and (4.16) we obtain

r(E,E,N) =
1

2

N−1∑
k=1

h(E,E, k(N − k)) ≤ 3

4

N−1∑
k=1

σ(k(N − k))

=
3

4

(
5

12
− 1

2N

)
sl(N) <

5

16
sl(N).

To prove (4.18), recall that End(E) = Z[ρ] where ρ = −1+
√
−3

2
. Since this has class

number 1 and |Z[ρ]×| = 6, it follows that h(E,E,m) = 6ν(m), where ν(m) denotes
the number of ideals of O = Z[ρ] of norm m. From the decomposition of primes in
O one easily sees that (4.18) holds (for more detail, see the proof of Proposition 2.2
of [Ka4]), which finishes the proof of Theorem 4.4.
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